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Abstract. Networks of companies can be constructed by using return correlations. A crucial issue in this
approach is to select the relevant correlations from the correlation matrix. In order to study this problem,
we start from an empty graph with no edges where the vertices correspond to stocks. Then, one by one, we
insert edges between the vertices according to the rank of their correlation strength, resulting in a network
called asset graph. We study its properties, such as topologically different growth types, number and size of
clusters and clustering coefficient. These properties, calculated from empirical data, are compared against
those of a random graph. The growth of the graph can be classified according to the topological role of
the newly inserted edge. We find that the type of growth which is responsible for creating cycles in the
graph sets in much earlier for the empirical asset graph than for the random graph, and thus reflects the
high degree of networking present in the market. We also find the number of clusters in the random graph
to be one order of magnitude higher than for the asset graph. At a critical threshold, the random graph
undergoes a radical change in topology related to percolation transition and forms a single giant cluster,
a phenomenon which is not observed for the asset graph. Differences in mean clustering coefficient lead us
to conclude that most information is contained roughly within 10% of the edges.

PACS. 89.65.-s Social and economic systems – 89.75.-k Complex systems – 89.90.+n Other topics in areas
of applied and interdisciplinary physics (restricted to new topics in section 89)

1 Introduction

In a financial market the performance of a company is
compactly characterised by a single number, namely the
stock price. This is thought to be based on available in-
formation, although it is heavily debated what informa-
tion it should reflect. In the world of business and finance,
companies interact with one another, creating an evolving
complex system [1]. Although the exact nature of these
interactions is not known, as far as price changes are con-
cerned, it seems safe to assume that they are reflected in
the equal-time correlations. These are central in invest-
ment theory and risk management, and also serve as in-
puts to the portfolio optimisation problem in the classic
Markowitz portfolio theory [2].

Network theory [3] provides an approach to complex
systems with many interacting units where the details of
the interactions are of lesser importance, it is their bare
existence what is focused on. Recently this approach has
proved to be extremely useful in a broad field of appli-
cations ranging from the Internet to microbiology. Obvi-
ously, the economy is a good hunting field to search for
networks [4].

a e-mail: kertesz@phy.bme.hu

In this paper we study a financial network where the
vertices correspond to stocks and the edges between them
to distances, which are transformed correlation coeffi-
cients. Mantegna was the first [6] to construct networks
based on stock price correlations and the idea was followed
by a series of papers [7–12]. Recently, also time-dependent
correlations were studied, resulting in a network of influ-
ence [13]. Here we deal with a network, which we have
termed asset graph and introduced in [5]. It is a natu-
ral extension to our previous work with asset trees [8–10],
based on the idea by Mantegna [6].

We focus on the construction and clustering of the as-
set graph. We would like to emphasise that the impor-
tant issue of information versus noise is closely related to
our study. Although the estimated correlation matrix is
a simple measure of coupling between stocks, it suffers
from similar problems as the stock price on which it is
based; due to a considerable degree of noise its informa-
tion content is questionable. The general problem with
empirical data is that the correlation matrix of N assets
is determined from N time series of length T , and if T is
not very large compared to N , one should expect the re-
sulting empirical correlation matrix to be dominated by
measurement noise. The fact that a certain part of the
asset tree is robust, i.e. changes very slowly in crash free
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times [8,9] already points towards the existence of an in-
formation core. Here we would like to explore this issue
further.

The problem of information content of the correlation
matrix is central to portfolio theory. There have been sev-
eral attempts to analyse this issue. One is based on the
random matrix theory, which offers an interesting com-
parative perspective [14]. The idea is that the properties
of an empirical correlation matrix are compared to a null
hypothesis of purely random matrix as can be obtained
from a finite time series of strictly independent assets. It
is postulated that deviations from the theoretical predic-
tions are indicative of true information. The general find-
ing is that empirical correlation matrices are dominated by
noise [15,16]. There have also been simulation-based ap-
proaches to study the effect of time series finiteness [17],
where the use of artificial data enables isolation of errors
due to sources other than finite T . A different but inti-
mately related approach has been preferred in the finance
literature, namely principal component analysis [18]. Re-
cently independent component analysis, a different tool of
multivariate statistical analysis has also been applied to
such problems [19].

We would like to follow a more geometrical alternative,
based on financial networks, which gives rise to an inter-
esting parallelism with the previous line of work. Just as
random matrix theory yields a benchmark by establish-
ing a null hypothesis of a totally random matrix, random
graph theory establishes a null hypothesis of a totally ran-
dom graph. In other words, one can compare the results
obtained for empirical graphs against those of random
graphs, which are well known [20], and interpret devia-
tions from random behaviour as information.

The paper is organised as follows. In Section 2 we reca-
pitulate the method for constructing asset trees and asset
graphs. In Section 3 we study their differences due the
clustering observed in the asset graph but not in asset
tree. In Section 4 we explore a sample asset graph fur-
ther, and compare the results to a random graph. At the
end of the section we briefly discuss the problem of noise
versus information in the light of our results. Finally, we
summarise the results of the paper in Section 5.

2 Method for constructing asset graphs and
asset trees

Earlier we have studied the time evolution of asset trees
in [8–10] and extended our approach to asset graphs
in [5], where the two approaches were explicated and com-
pared. Let us first recapitulate the two methods. Con-
sider a price time series for a set of N stocks and denote
the closure price of stock i at time τ (an actual date)
by Pi(τ), and define the logarithmic return of stock i as
ri(τ) = lnPi(τ) − ln Pi(τ − 1). We extract a time win-
dow of width T , measured in days and in this paper set
to T = 1000 (equal to four years, assuming 250 trading
days a year), and obtain a return vector rt

i for stock i,
where the superscript t enumerates the time window un-
der consideration. Then equal time correlation coefficients

between assets i and j can be written as

ρt
ij =

〈rt
ir

t
j〉 − 〈rt

i〉〈rt
j〉√

[〈rt
i
2〉 − 〈rt

i〉2][〈rt
j
2〉 − 〈rt

j〉2]
, (1)

where 〈...〉 indicates a time average over the consecutive
trading days included in the return vectors. These cor-
relation coefficients between N assets form a symmetric
N ×N correlation matrix Ct. The different time windows
are displaced by δT , where we have used a step size of one
month, i.e., δT = 250/12 ≈ 21 days, which gives rise to
interpreting the series of windows as a sequence of time
evolutionary steps of a single tree or graph. Next we de-
fine a distance between each pair of stocks, and base the
distance on the correlation coefficient. The transformation
dt

ij =
√

2(1 − ρt
ij) is motivated by considerations of ultra-

metricity [6]. For reasons of compatibility with the earlier
work we will use this definition, but would like to point
out that for our purposes any monotonically decreasing
distance function of the correlation coefficient ρt

ij would
do. With the chosen transformation, the individual corre-
lation coefficients are mapped from [−1, 1] to [2, 0], and
the correlation matrix is mapped into a symmetric dis-
tance matrix Dt.

Until now the method for constructing asset trees and
asset graphs is identical, and the difference arises in the
next step. Asset trees are constructed according to [6] by
determining the minimum spanning tree (MST) of the dis-
tances, denoted Tt. The spanning tree is a simply con-
nected acyclic graph that connects all N nodes (stocks)
and its size (number of edges) is fixed at N − 1 such that
the sum of all edge weights,

∑
dt

ij∈Tt dt
ij , is minimum. The

spanning tree, by definition, spans all N vertices in the
set V in all time windows t and is thus time indepen-
dent, whereas the set of edges Et is time dependent, as
is evidenced by our studies on tree robustness in [8–10].
In contrast, asset graphs are created for the same set of
vertices but the edges are inserted one by one, according
to the rank of the corresponding element of the D matrix
such that we start with the smallest (i.e., with the highest
correlation). Therefore the asset graph can have any size
between 0 and N(N − 1)/2, corresponding to all vertices
being isolated and the entire graph being fully connected,
respectively. The size n is controlled by the number of
shortest edges already present in the graph. There is no
acyclicity condition for asset graphs, neither do they need
to be connected.

3 Asset graph and asset tree comparisons

Let us now consider, as a special case, an asset graph of or-
der N (number of vertices or stocks), and of size n = N−1
(number if edges), so that it is comparable in this sense to
the asset tree. In general, the elements included in the as-
set graph are much more optimal, i.e., shorter than those
in the asset tree, as can be shown by examining their dis-
tributions, see [5]. This is due to the fact that there are
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Fig. 1. Sample graph of N = 116 vertices and n = 20 edges,
corresponding to a connection probability p = n/[N(N −
1)/2] ≈ 0.003.
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Fig. 2. Sample graph for n = 40 edges (p ≈ 0.006).

very strongly inter-connected clusters in the market, and
they are reproduced in the asset graph, but not in the as-
set tree where the tree condition suppresses this feature.
Thus some of the vertices form cliques, use up the available
edges and create cycles in the process. On the other hand,
the spanning criterion forces the tree to include weak con-
nections which are naturally left out from the graph. For a
visualisation of these differences see Figures 1 and 2 in [5].

Here we wish to focus more on the aspects of the
growth and clustering for the same set of data, in partic-
ular for the asset graph. The most straight-forward way
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Fig. 3. Sample graph for n = 80 edges (p ≈ 0.012).
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Fig. 4. Sample graph for n = 160 edges (p ≈ 0.024).

to see how the asset graph topology and clusters form is
depicted as an example in Figures 1 to 4. Note that ver-
tices are drawn using a variety of different markers, where
the marker type and colour correspond to the company’s
business sector as classified by Forbes [21]. For certain
companies, such as those in the Energy Sector (marked
by red asterisks) we would expect strong intra-business
sector clustering, and for some, such as those in the Finan-
cial business sector (blue circles), we would expect strong
inter -business sector clustering. (For colours see the elec-
tronic version of this paper.) There are also some stocks
for which we would not expect graph clustering to corre-
spond to the business sector labels (for a discussion on the
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correspondence between business sectors and asset tree
clusters see [9]).

Some observations and comments are in place.
(i) In Figure 1, after only n = 20 edges have been

added, already four cycles have formed. This makes it clear
that asset tree and asset graph topologies start to diverge
at an early stage, i.e., for small n.

(ii) In Figure 2, the additional 20 edges seem to rein-
force the small clusters present in Figure 1. In general, it
is interesting to note that the clusters created very early
seem to become more and more strongly connected, and
also grow by having new vertices attached to them as edges
are added. It is not evident that the strongest connections
(shortest edges) should define the clusters the way they
do, as one could have a situation where a very strongly
cliqued group of companies appears later on. However,
moving from Figures 2 to 4, it is clear that this is what
happens.

(iii) An asset tree defined on 116 vertices has 115 edges.
In Figure 4, where the number of edges n = 160 easily ex-
ceeds this, there are still several isolated vertices left. This
turns out to be so even after 1000 edges have been added.
The asset tree, however, would contain by definition those
isolated vertices after the inclusion of n = 115 edges. In
this sense, although the asset tree can provide an overall
taxonomy of the market, the connections it creates may
be misinterpreted to be more meaningful than they are.
As mentioned earlier and studied in [5], this due to the
the minimum spanning tree criterion. Consequently, it is
hardly surprising that an asset graph of the size of an as-
set tree is much more robust, since the weak connections
contained in the tree are prone to breaking easily [5].

(iv) We can observe in Figure 4 that although some
clusters are very heavily intra-connected, they are not yet
inter-connected to other clusters. Two such examples are
the energy cluster at the bottom left corner and the utili-
ties cluster in the top right corner of Figure 4.

(v) In general, we see that there is good agreement be-
tween graph clusters and business sector definitions given
by an outside institution.

(vi) Although the graph analysed here is just a sample,
obtained by fixing the time, i.e., choosing a random value
for the time superscript t, preliminary studies indicate
that qualitatively similar clustering is observed through-
out the time domain.

As points (i) and (iii) above indicate, asset trees and
asset graphs have clearly different topologies. Let us de-
note the asset graph more completely by its vertex and
edge set as Gt = (VG, Et

G), and the asset tree similarly
by Tt = (VT , Et

T ). For statistically more reliable results,
we have used a set of split-adjusted daily price data for
N = 477 NYSE traded stocks, time-wise extending from
the beginning of 1980 to the end of 1999. This is the
dataset we will use throughout the paper unless mentioned
otherwise. We can learn about the overall topological dif-
ferences between the asset graph and asset tree by study-
ing the overlap of edges present in both as a function of
time. The relative overlap is given by 1

N−1 |Et
G∩Et

T | where
∩ is the intersection operator and |...| gives the number of
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Fig. 5. Overlap of edges in the asset graph Gt and asset tree
Tt for T = 1000 trading days as a function of time. The average
value, roughly 24%, is indicated by the horizontal line.

elements in the set. As can be see from the plot in Fig-
ure 5, on average the asset graph and asset tree share
about 24%, or roughly one quarter, of edges. This quan-
tity is also fairly stable over time. Since the asset graph
consists of the shortest possible edges and is optimal in
this sense, whenever an edge in Et

T is not included in Et
G,

the sum of edges for the asset graph is increased above
this optimum. Therefore, we can infer from Figure 5 that
on average some 75% of the edges contained in the as-
set tree are not optimal in this sense. We drew a similar
conclusion by comparing edge length distributions for the
asset tree and asset graph in Figures 4 and 5 [5].

Motivated by observation (i) above, it is also of in-
terest to study how this overlap of edges changes in the
process of constructing asset graph and tree one edge at a
time. In order to generate the minimum spanning tree,
we use Kruskal’s algorithm. This consists of taking all
of the distinct N(N − 1)/2 distance elements from the
distance matrix Dt, and obtaining a sequence of edges
dt
1, d

t
2, . . . , d

t
N(N−1)/2, where we have used a single index

notation. The edges are then sorted in a nondecreasing or-
der to get an ordered sequence dt

(1), d
t
(2), . . . , d

t
(N(N−1)/2).

We select the shortest unexamined edge for inclusion in
the tree, with the condition that it does not form a cycle. If
it does, we discard it, and move on to the next unexamined
edge on the list. Apart from for the constraint on cycles,
the algorithm is identical to the way asset graphs are gen-
erated. If we denote the size of graph in construction by n,
where n = 1, 2, . . . , N −1, then at least for small values of
n asset graphs and asset trees should contain the same set
of edges, i.e., Et

G(n) = Et
T (n) and, therefore, be identical

in topology. It is expected that, starting from some value
of n = nc, the above equality no longer holds, and obser-
vation (i) above leads us to expect a small value for nc.
Once the equality breaks, the first cycle is formed and,
consequently, for all n ≥ nc the asset graph and tree differ
topologically. This is demonstrated in Figure 6, where the
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Fig. 6. Overlap of edges Et
G(n) in the asset graph and Et

T (n) in
the asset tree, where n = 1, 2, . . . , n, as a function of normalised
number of edges n

N−1
, averaged over time.

relative overlap of edges, 1
N−1 |Et

G(n) ∩ Et
T (n)|, has been

plotted as a function of normalised number of edges, n
N−1 ,

and the quantity has been averaged over time. The func-
tion decreases rapidly for small values of n

N−1 , indicating
that for the current set of data with N = 477, only a few
edges can be added before the first cycle is formed. As
more and more edges are added, the plot converges to the
24% time average.

4 Asset graph and random graph comparisons

We now leave asset trees behind and deal exclusively
with asset graphs. We focus on our empirical sample
graph Gemp evaluated from a distance matrix Dt for a ran-
domly chosen time window location t. We then construct
a random graph of the same size as the asset graph, and
compare the results between the two. The fact the window
is fairly wide at T = 1000 means that the results are less
sensitive to the time location t of the window and, conse-
quently, can be generalised to a greater extent than if a
shorter window width was used. Time dependence of the
quantities studied, as well as a more analytical approach
in general, are postponed until a later exposition.

As should be clear from the earlier discussion, the asset
tree approach as a simple, non-parametric classification
scheme always produces a unique taxonomy. Because of
the tree condition, the asset tree ignores some important
correlations, and also fails to capture the strong network-
ing present in the financial market. It is generally agreed
that the correlation matrix contains both information and
noise, and one is obviously interested in finding and study-
ing the information rich part. In the extreme case of no
information, one could find the minimum spanning tree
for a completely random matrix of uncorrelated data. In
this case one would also obtain a classification, but hardly

a meaningful one. This indicates a possible drawback in
the minimum spanning tree method.

Growth and clustering of asset graphs is an interesting
problem in its own right, but it may also, as we believe,
shed light on the information versus noise issue. We will
now consider the size n of the graph as a parameter and
increase it, at least in theory, all the way up to the fully
connected graph. If d(n) is the latest edge added, where
n = 1, 2, . . . , N(N −1)/2, we quantify the degree of graph
completeness by p = n/[N(N − 1)/2], where p ∈ [0, 1].
In practice, for our empirical data of N = 477 stocks we
do this for p ∈ [0, 0.25], corresponding to a maximum of
28,382 edges. In our experience this interval is sufficient,
since most quantities beyond this become practically ran-
dom anyway.

The random graph, or more specifically an Erdös-
Rényi random graph, is denoted by Gran and constructed
as follows: Given N labelled, isolated vertices, we con-
sider all possible vertex pairs in turn and connect them
with probability p. However, instead of generating the ran-
dom graph explicitly from the definition, we obtain one by
shuffling the elements in the distance matrix Dt and then
add them, one edge at a time, to the graph. The graphs
obtained at different stages of this process correspond to
higher and higher connection probabilities p. This method
enables us to compare graph construction for the empirical
graph G(p)emp and random graph G(p)ran as a function of
the connection probability p. Strictly speaking the results
derived from the random-graph theory apply only in the
limit when the number of nodes N tends to infinity. Al-
though the datasets we have studied have either N = 116
or N = 477, acknowledging the presence of finite size ef-
fects, one can consider the random graph as a benchmark
against which deviations from random behaviour can be
measured. As we will see, the financial network does not
follow the predictions of the random graph theory and
thus constitutes a complex network.

4.1 Cluster growth and size

We start by studying what we call the spanned graph or-
der. Whereas graph order indicates the number of ver-
tices in the graph, we define spanned graph order as the
number of vertices with vertex degrees greater than or
equal to one, i.e., only those vertices are counted that
have at least one edge connected to them. This distinc-
tion is needed because graph order itself is a constant for
our graphs. Figure 7 plots spanned graph order for em-
pirical and random data. We find that the random graph
becomes fully connected very early on, i.e., its spanned
graph order S(Gran(p′)) = N = 477 for p′ ≈ 0.012,
whereas for the empirical graph for the same value of p we
have S(Gemp(p′)) = 164. In the empirical case, edges are
used to create strong clusters and, therefore, the spanned
graph order grows more slowly than for the random case,
in which there is no systematic clustering present.

We can study some topological aspects of graph con-
struction by considering four distinct types of growth that
occur in the graphs. The division into these specific growth
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Fig. 7. Spanned graph order for empirical and random data.

types is motivated by their intuitive appeal and relevance
in this application context. These different types cause
qualitatively different growth of graph clusters, and study-
ing them can help us understand the differences we observe
in greater detail. In the case of a financial network, edge
clusters are more interesting than vertex clusters, because
it is edges, i.e., correlations amongst stocks, that very nat-
urally define clusters in the financial market, as Figures 1
to 4 show. A cluster, denoted by Ci = (Vi, Ei), is defined
to be an isolated subgraph induced by a set of edges Ei,
containing the vertices Vi. We also define cluster size of
Ci simply as |Ei|. Similarly, cluster order for Ci is given by
|Vi|. The four different growth types occurring upon the
addition of a new edge eij , incident on vertices vi and vj ,
are the following:

(I) Create a new cluster. This occurs when neither of
the two vertices vi nor vj , incident on the new edge
eij , are part of an existing cluster. A new cluster
is created, its spanned cluster order is two, and
cluster size one.

(II) Add a node and an edge to an existing cluster.
Adds vertex vi and the incident edge eij to an ex-
isting cluster, when the other vertex vj already be-
longs to it. Spanned cluster order and cluster size
are increased by one.

(III) Merge two clusters. Merge cluster Ci containing
the vertex vi and cluster Cj containing the vertex
vj by adding the incident edge eij between them.
If |Ei| ≥ |Ej |, the cluster Ci survives and its new
order is |Vi| + |Vj | and new size |Ei| + |Ej | + 1.
Cluster Cj disappears as we have Ej = ∅ and Vj =
∅. Intuitively speaking, the larger cluster eats the
smaller one.

(IV) Add a cycle to an existing cluster. Add an edge
to an existing cluster, thus creating a cycle and
reinforcing the clustering. Spanned graph order is
increased by one.
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Fig. 8. Growth types for the random graph. Inset: number of
clusters for the random graph.
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Fig. 9. Growth types for the empirical graph. Inset: Number
of clusters for the empirical graph.

The cumulative occurrence of each growth type is plot-
ted as a function of p for random data in Figure 8 and for
empirical data in Figure 9. Some observations. (i) The
growth of the random graph starts linearly with type I
and continues like that practically for two decades, as new
clusters of one edge and two vertices are created. As a re-
sult, the number of vertices grows by two on each step,
contributing to the rapid increase in spanned graph order
for the random graph in Figure 7. Type I growth is clearly
less dominant for the empirical graph, for which growth
of other types starts earlier. (ii) In regard to clustering,
type IV growth is most relevant and is observed roughly
1.5 decades earlier for the empirical data than for the ran-
dom data. This finding is corroborated by Figures 1 to 4
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and the related discussion. (iii) We observe that the num-
ber of types I and III growth almost converge as p → 1.
The convergence is to be expected since in moving towards
a fully connected graph, all the separate clusters that have
been formed will be merged at some point. Thus in the
limit the number of mergers needs to equal the number of
components to be merged minus one, since one cluster, the
fully connected graph, remains. The convergence seems to
take place an estimated 1.5 decades later for the empiri-
cal graph than for the random graph, indicating that the
clusters observed for the empirical data remain separate
or disconnected from the rest until much later.

Let us now study the number of clusters formed as a
function of p. Of the four growth types analysed above,
only type I and type III affect the number of clusters in
the system, by either increasing or decreasing it by one,
respectively. Therefore, the number of clusters for a given
value of p is given by the difference between type I and
type III curves in Figures 8 and 9. This is more clearly
shown on linear scales in the insets of the same figures
(please note that the scales in the insets are different). The
maximum number of clusters for the sample random graph
is 75, occurring at p ≈ 0.0013, whereas for the empirical
graph it is 9, occurring at p ≈ 0.0011. The high spanned
graph order for the random graph due to type I growth,
and relatively low mean clustering coefficient as compared
to the asset graph (as seen later), leads to a large num-
ber of clusters that are relatively early combined to form
one giant cluster. In contrast, the empirical graph has a
much more slowly increasing spanned graph order, fewer
clusters, and exhibits predominantly type IV growth to en-
hance the existing clusters (high mean clustering). Conse-
quently, the maximum number of clusters is left small. It is
interesting to note that in this case the maxima, although
very different in value, happen for roughly the same value
of p. Further studies are required to explain whether this
is by chance or a systematic finding.

Let us now turn to cluster size distributions presented
in Figures 10 and 11. For the random graph, the large
number of clusters seem to disappear suddenly when the
clusters are merged together, as the sudden jump in type
III growth in Figure 8 indicates. This type of sudden tran-
sition is not present for the empirical graph, further sup-
porting the conjecture that the behaviour of the asset
graph is markedly different from the random graph.

The results we have obtained for the random graph
are well explained by some basic random graph theory,
from which we wish to review very briefly some impor-
tant elementary findings [3]. This will help not only to
explain the random results, but may also help to under-
stand why the empirical graph behaves so differently. The
most central goal of random-graph theory is to determine
at what connection probability p a particular property of
a graph will most likely arise. In most general terms, we
can ask whether there is a critical probability that marks
the appearance of arbitrary subgraphs and, as its impor-
tant special cases, trees and cycles of a given order. The
problem was solved by Bollobás [20]. Consider a random
graph with N vertices connected by n edges and assume
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Fig. 10. Cluster size for the random graph. Different curves
correspond to different clusters. Since several clusters of size
one overlap one another in this figure rendering them indistin-
guishable, one cannot count the total number of clusters from
this plot.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

p

cl
us

te
r 

si
ze

Fig. 11. Cluster size for the empirical graph. See comment in
Figure 10.

that the connection probability p(N) ∝ Nz, where the
parameter z ∈ (−∞, 0]. For a random graph, the average
degree is given by

〈k〉 = 2n/N = p(N − 1) ≈ pN,

and this quantity has a system size independent critical
value. When z < −1 such that the average degree of the
graph 〈k〉 = pN → 0 as N → ∞, the graph consists of
disjoint trees. The appearance of these small trees is tied
to some threshold values of z such that below that value
almost no graph has the given property, whereas for val-
ues above it almost every graph has the property. What is
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remarkable from our perspective is that for z < −1 there
are no cycles present, but when z = −1, corresponding to
〈k〉 = constant, trees and cycles of all orders appear. We
can find out about the size and structure of clusters for
this particular case when p ∝ N−1. When 0 < 〈k〉 < 1,
although there are cycles present, almost all nodes belong
to trees, and the size of the largest tree is proportional to
ln N . The mean number of clusters is of order N −n, so in
this range of 〈k〉 the number of clusters decreases by 1 as
n increases by 1, i.e., when a new edge is introduced in the
graph. If 〈k〉 is increased to the threshold 〈k〉c = 1, cor-
responding to a critical probability pc ≈ 1/N , the topol-
ogy of the graph changes suddenly. The small clusters are
merged together to form a single giant cluster, or a giant
component, and it has a fairly complex structure. Other
clusters are small, and most of them are trees. As 〈k〉 is
increased further, the small clusters are attached to the
giant cluster. Therefore, for values below pc the graph
is made up of isolated clusters, but for values above pc

the giant cluster spans the graph. Given these theoreti-
cal considerations, the fact that cycles are found in the
graphs in Figures 1 to 4, even for p ≈ 0.003, underlines
the highly correlated “non-random” nature of the finan-
cial network. Last, as a point concerning terminology, it
should be mentioned that the emergence of the giant clus-
ter is the same phenomenon as a percolation transition in
infinite-dimensional (mean field) percolation. The differ-
ence in the behaviour around the emergence of the giant
component between the random and empirical graph in-
dicates that the transition in the latter is also of different
nature.

4.2 Clustering coefficients and information

Finally, we will study the clustering coefficients for our
smaller set of 116 S&P500 stocks. Clustering coefficient of
vertex i is defined as

Ci =
2∆i

ki(ki − 1)
,

where ki is the number of incident edges of vertex vi

(vertex degree), and ∆i the number of edges that ex-
ist between the ki neighbours of vertex vi. The normal-
isation in the definition is due to the fact that at most
there can be ki(ki − 1)/2 edges between the ki vertices,
which would happen if they formed a fully connected sub-
graph. Thus the coefficient is normalised on the inter-
val [0, 1]. The value of clustering coefficient for each vertex
v1, v2, . . . , v116 is plotted in Figure 12 for both the random
graph and empirical graph, where the vertex index is given
on the horizontal axes, the vertical axes give the value of p,
and the shades corresponds to the value of the clustering
coefficient. The two plots are strikingly different. For the
random graph, overall there is a very smooth, rainbow-
like transition from zero to unity. In addition, all vertices
behave in a fairly homogeneous manner. For the empiri-
cal graph the transition towards unity is much faster and
there is much greater heterogeneity present. Further, there

Fig. 12. Clustering coefficient as a function of vertex index
(horizontal axis) and p (vertical axis). Left: random graph,
right: empirical graph.

are some very high clustering coefficient values observed
for some vertices at low values of p.

Since much of our attention has focused on asset graph
clusters, we calculated clustering coefficients of the sample
graph for each cluster when p ∈ [0, 1]. These are simply
averages of the clustering coefficients Ci of individual ver-
tices belonging to a given cluster Ci, i.e.,

CCi =
1
|Vi|

∑
Ci∈Ci

Ci.

In Figure 13 we show results for selected six clusters,
namely, Transportation, Energy, Utilities, Basic Materi-
als 1, Utilities / Healthcare, and Basic Materials 2. For
values of p ≥ 0.05 all other clusters coalesce into the Util-
ities / Healthcare cluster, which behaves very similarly
to the mean clustering coefficient discussed shortly. The
small deviations result from the fact that there are some
isolated vertices which are not included in the coalesced
cluster but are counted in the mean clustering coefficient.
For purposes of visualisation only clusters with six or more
edges are included in Figure 13, as for smaller clusters the
clustering coefficient fluctuates wildly and makes the plot
messy. Further, only those clusters with reasonably long
life time in terms of p are included.

In most cases each cluster consists of stocks that belong
to different business sectors. The clusters are named after
the dominating business sector, i.e., the business sector
shared by a majority of the vertices in the cluster. Apart
from one exception, a single business sector dominates for
each value of p, indicating strong correspondence between
cluster and business sector groups. The only exception
is the largest cluster, i.e., Utilities / Healthcare, which
was dominated by either Utilities or Healthcare stocks,
depending on the value of p.

The four most highly connected clusters are Trans-
portation, Basic Materials 1, Utilities, and Energy. The
cluster-wise calculated clustering coefficients are more
meaningful when examined in conjunction with Figures 1
to 4. One should also bear in mind that cluster sizes and
cluster orders for the four clusters are different, and this
needs to be taken into account when studying clustering
coefficients. Although cluster sizes for these clusters are
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Fig. 13. Clustering coefficients for selected clusters as a func-
tion of p.

not reported in this paper for the particular set of data, it
is clear that for larger clusters there is more jitter in the
curves of Figure 13. The Transportation cluster consists,
for the most part, of stocks AMR, DAL, U and LUV and
is fully connected, as there is an edge between DAL and
LUV, although poorly visible. Basic Materials 1 cluster
consists of stocks IP, GP, WY and BCC, and they are also
fully connected for p ∈ [0.005, 0.03], but clustering falls as
new vertex is added to the cluster. The most striking ex-
amples, however, are Utilities and Energy clusters, both of
which encompass several vertices. As Figure 4 shows, they
are very strongly connected. Quite remarkably, both clus-
ters are also very homogeneous in terms of their business
sector makeup. These findings indicate that in the finan-
cial network there are clusters that are relatively separate
from others, and yet their internal connectivity is high.

By averaging the clustering coefficients Ci over all ver-
tices i one obtains the mean clustering coefficient Cran

and Cemp, both plotted in Figure 14. From this plot the
difference in the rate of change of the clustering coefficient
for the random and empirical case is very obvious. For the
random graph the mean clustering coefficient is zero up to
and including p′ = 125/6670 ≈ 0.02, whereas for the em-
pirical graph for the same p = p′ the mean clustering co-
efficient is 0.33. For the random graph, the zero value and
low values at the beginning in general are again explained
by type I growth leading to duple clusters (one edge, two
vertices), for which the clustering coefficient is zero. For
the empirical graph the early type IV growth creates sev-
eral cycles of order three as can be seen, for example, in
Figure 1. For these cycles the clustering coefficient is unity,
and this contributes to the mean clustering coefficient. To
visualise the empirical graph with 125 edges, one can men-
tally interpolate between Figures 3 and 4 to convince one-
self of the high mean clustering coefficient value. Please
note that the clustering coefficient results can directly be
compared only with Figures 1 to 4, since for other random
and empirical graph plots a different dataset was used.
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Fig. 14. Mean clustering coefficients for the random and em-
pirical graph as a function of p.

The mean clustering coefficient for the random graph,
for all practical purposes, is linear with a slope of unity
(except for the slight fluctuation for small p). This result
is compatible with random graph theory, since for a ran-
dom network, the probability of its two nearest neighbours
being connected is the same as that for any two randomly
picked vertices being connected. Therefore, the mean clus-
tering coefficient for a random graph is

Cran = p =
〈k〉
N

.

We conjecture that comparing the mean clustering co-
efficient of an empirical asset graph against a random
graph can be used to estimate the information content
of the edges in the graph and, consequently, the informa-
tion content of the corresponding correlation coefficients
in the related correlation matrix. For a rough analysis of
results we divide the empirical curve in Figure 14, based
on its behaviour, into three sections along the horizon-
tal axis. The first section of rapid growth covers the first
10% of edges (p ∈ [0, 0.1]), during which the mean clus-
tering coefficient increases very rapidly and, in particular,
much faster than for the random graph. We interpret this
significant deviation from the random case to imply that
the first 10% of the edges add substantial information to
the system. During the first part of the second section for
roughly p ∈ [0.1, 0.2], the rate of change starts to slow
down and reaches a sort of a plateau or saturation dur-
ing the second part of this section for p ∈ [0.2, 0.3]. We
consider these findings to indicate that the edges added
in this section for p ∈ [0.1, 0.3] are less informative. For
the last section, from p = 0.3 onwards, we believe the re-
maining 70% to be relatively poor in information content,
possibly just noise. Although the curve becomes steeper
as p → 1, we do not consider this to reflect genuine infor-
mation but to result from the boundary conditions of the
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problem, since for p = 1 the mean clustering coefficient
must be equal to unity.

We believe that the method of comparing empirical
graph properties to random graph theory predictions can
be used to address the information versus noise issue of
the underlying correlation matrix. In spirit this is a sim-
ilar argument to using random matrix theory to study
the information content of empirical correlation matrices
by comparing their properties, mainly eigenvalue spectra.
In [15], there was remarkable agreement between the theo-
retical prediction and empirical data concerning both the
density of eigenvalues and the structure of eigenvectors for
the correlation matrix. For their set of N = 406 assets of
the S&P 500 for T = 1309 days, Laloux et al. found 94%
of the total number of eigenvalues to fall within the region
predicted by the theory, leaving only 6% of the eigenvec-
tors to appear to carry some information. This finding is
compatible with the above discussion. We plan to repeat
this analysis for a larger set of data in the near future and
carry it out dynamically.

5 Summary and conclusion

In this paper we have recapitulated the method for
constructing asset graphs and asset trees. Due to the
tree condition, the asset tree fails to capture the strong
clustering in the financial market, but this is clearly
present in the asset graph. We have found the clusters
in the asset graph to appear very early, i.e., for low
connection probabilities, after which asset graph and
asset tree topologies begin to differ. The two methods
result in an approximate 25% overlap of edges over
time, and the remaining 75% cause them to exhibit
qualitatively very different behaviour. We have studied
the asset graph further and compared the results to a
random graph of the same size as a function of connection
probability. We have divided the growth processes into
four distinct growth types, and have found type I growth
to be responsible for the fast growth in spanned graph
order for the random graph. A study of growth types
has also revealed how type IV growth, responsible for
creating cycles in the graph, sets in much earlier for the
asset graph, and thus reflects the networking present in
the market. We have also found the number of clusters in
the random graph to be one order of magnitude higher
than for the asset graph. At a critical threshold, the
random graph undergoes a radical change in topology,
when the small clusters merge to form a single giant
cluster. This phenomenon, equivalent to a percolation
transition, is not observed for the asset graph. Finally, we
have studied clustering coefficients and mean clustering
coefficients, and found them to behave very differently for
the asset and random graph. We have conjectured that
this difference may be suitable for studying what fraction
of edges in the graph, or correlation coefficients in the re-
lated correlation matrix, is information and what is noise.
Based on this approach, only some 10% of the edges ap-
pear to carry genuine information. The results presented

in this paper concerning asset and random graph compar-
isons have been carried out for a randomly selected but
representative time window and a more rigorous study
should be made to include the possible effects of time de-
pendence.
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